Math-and Reading in-CTE Lesson Plan

Lesson Title: Number Systems (Binary, Decimal, Hexadecimal)

Occupational Area: Computer Science
CTE Concept(s): Programming/Computer Science/CIS
Math Concepts: Number Systems

| Lesson
 Objective:Studen
 ts will understand
 the basis of
 number systems
 generally and
 how to convert
 between several
 number systems
 commonly used
 in CS |
| :--- | :--- |
| Supplies
 Needed:None |
| Link
 Accompanying
 Materials: |

THE "7 ELEMENTS"	TEACHER NOTES (Answer keys)

1. Introduce the CTE lesson. How do numbers work? is $10+10$ ever equal to 100 ?	Yes! In binary $10+10=100$
2. Assess students' math awareness as it relates to the CTE lesson. Evaluate:	What are some examples of ways to count? Answers could include our traditional decimal system, counting on fingers, roman numerals, tally marks etc. What do all these systems have in common? They all use a combination of symbols to represent a number. How does the Decimal number system work? Symbols (0-9) and place value (From right to left, 1s,10s,100s, etc)
3. Work through the math example embedded in the CTE lesson. Break down decimal numbers explaining the symbols and place values.	A number in decimal is really just a number of numbers. The number 1 means we have 1 from our 1 place value. AKA there is 1 . The number 22 really means we have 210 place values, and 2 one place values. 2*10 + 2* $1=22$. Show more examples until this sinks in. Very important to understand conceptually as this same system applies to all of the different "base" number systems. The base of our number system is 10 . The base of any number system is the number of symbols used to represent values. $0-9$ is 10 different symbols. The place values are defined (from right to left) as the base raised to a power. The right most place is $10^{\wedge} 0$, then $10^{\wedge} 1$, then $10^{\wedge} 2$ etc...Binary has base 2 . This means

$\left.\begin{array}{|c|l|}\hline & \begin{array}{l}\text { we have } 2 \text { symbols available: } 0-1 \text { and the place } \\ \text { values from right to left are } 2^{\wedge} 0,2^{\wedge} 1,2^{\wedge} 2 \text { etc... }\end{array} \\ \hline \begin{array}{c}\text { 4. Work through related, } \\ \text { contextual math-in-CTE } \\ \text { examples. } \\ \text { What is binary used for in } \\ \text { computing? }\end{array} & \begin{array}{l}\text { Binary is the basis of all modern computing. } \\ \text { Computers are built with logic circuits, taking } \\ \text { positive and negative chargers converting to } 1 \text { s } \\ \text { and } 0 \text { s. The underlying code that you write in } \\ \text { any traditional coding language gets converted } \\ \text { computing? }\end{array} \\ \text { into 1s and 0s. Although you as a programmer } \\ \text { do not frequently need to be able to work with } \\ \text { binary, it is important to have an understanding } \\ \text { of what it is. Also, hexadecimal is frequently } \\ \text { used by programmers and web designers in the } \\ \text { context of rgb colors. Understanding these } \\ \text { number systems also helps to understand things } \\ \text { like standard storage sizes of hard drives/ssds }\end{array}\right\}$

	Hex is used in computing because two hex digits is equivalent to 8 binary digits, a binary digit is called a bit, and 8 of those are called a byte. Therefore it is easy to represent one of the base chunks of data in computing with hex digits.
Practice hex to decimal and vice versa conversions.	
6. Students demonstrate their understanding. Create a worksheet with several problems. Also, introduce a different base that hasn't been discussed (such as base 8 or base 3). Have students convert numbers to one of these bases without any instruction (the same patterns apply here as well) How many binary digits are required to represent the decimal number $255 ?$ Hex? How do you figure out the largest number you can make with a certain number of digits in any base?	If you have 2 digits available in decimal, the largest number you can make is: 99. With binary: 11 (3 in decimal). The math for these calculations is simple and applies to any base: (base^number of places) - 1 8
$10 \wedge 2=100$	$100-1=99$

How do you make the largest number possible with any base?	$4-1=3$ Just use the largest symbol with as many place values as you have. In binary the largest symbol is 1, so all 1s is the largest number you can make with any number of place values. In decimal, all 9 s, in hex all f's		
Reading: Read the article: https://www.howtogeek.com/367 $621 /$ what-is-binary-and-why-do-c omputers-use-it/	In your own words, why do computers use binary?		
Is it possible for computers to use a base			
other than binary?		\quad	Have there ever been computers that used
:---			
a different base, if so what base did they			
use?			
What is boolean logic?			

Further Resources

Flippy
Do
https://studio.code.org/projects/applab/z6iOr137KHDvkIaz5UNCviWLVkkRnhyteDqWhWB J560
Number
systems:
https://www.perkinselearning.org/activity/tips-and-strategies-teaching-number-system-standa
rds\#:~:text=A\%20number\%20system\%20is\%20a,in\%20whole\%20numbers\%20and\%20som e.

